Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 67(3): 347-357, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458686

RESUMO

PURPOSE: Speed of bloodstream infection diagnosis is vital to reduce morbidity and mortality. Whole genome sequencing (WGS) performed directly from liquid blood culture could provide single-assay species and antibiotic susceptibility prediction; however, high inhibitor and human cell/DNA concentrations limit pathogen recovery. We develop a method for the preparation of bacterial DNA for WGS-based diagnostics direct from liquid blood culture. METHODOLOGY: We evaluate three commercial DNA extraction kits: BiOstic Bacteraemia, Amplex Hyplex and MolYsis Plus. Differential centrifugation, filtration, selective lysis and solid-phase reversible immobilization bead clean-up are tested to improve human cells/DNA and inhibitor removal. Using WGS (Illumina/MinION), we assess human DNA removal, pathogen recovery, and predict species and antibiotic susceptibility inpositive blood cultures of 44 Gram-negative and 54 Staphylococcus species.Results/Key findings. BiOstic kit extractions yield the greatest mean DNA concentration, 94-301 ng µl-1, versus 0-2.5 ng µl-1 using Amplex and MolYsis kits. However, we note higher levels of inhibition (260/280 ratio 0.9-2.1) and human DNA (0.0-4.4×106 copies) in BiOstic extracts. Differential centrifugation (2000 g, 1 min) prior to BiOstic extraction reduces human DNA by 63-89 % with selective lysis minimizing by a further 62 %. Post-extraction bead clean-up lowers inhibition. Overall, 67 % of sequenced samples (Illumina MiSeq) contain <10 % human DNA, with >93 % concordance between WGS-based species and susceptibility predictions and clinical diagnosis. If >60 % of sequencing reads are human (7/98 samples) susceptibility prediction becomes compromised. Novel MinION-based WGS (n=9) currently gives rapid species identification but not susceptibility prediction. CONCLUSION: Our method for DNA preparation allows WGS-based diagnosis direct from blood culture bottles, providing species and antibiotic susceptibility prediction in a single assay.


Assuntos
Bacteriemia/diagnóstico , Hemocultura , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Sequenciamento Completo do Genoma , Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/diagnóstico , Infecções Relacionadas a Cateter/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/genética , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular/métodos , Kit de Reagentes para Diagnóstico , Análise de Sequência de DNA/métodos , Staphylococcus aureus/genética
2.
Antimicrob Agents Chemother ; 60(8): 5068-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246777

RESUMO

The blaIMP-14 carbapenem resistance gene has largely previously been observed in Pseudomonas aeruginosa and Acinetobacter spp. As part of global surveillance and sequencing of carbapenem-resistant Escherichia coli, we identified a sequence type 131 strain harboring blaIMP-14 within a class 1 integron, itself nested within an ∼54-kb multidrug resistance region on an epidemic IncA/C2 plasmid. The emergence of blaIMP-14 in this context in the ST131 lineage is of potential clinical concern.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Plasmídeos/genética , beta-Lactamases/metabolismo , Acinetobacter/efeitos dos fármacos , Acinetobacter/enzimologia , Acinetobacter/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Integrons/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
3.
Antimicrob Agents Chemother ; 60(6): 3767-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067320

RESUMO

The recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapenems are a therapy of last resort against this family of common bacterial pathogens. Resistance genes can mobilize via various mechanisms, including conjugation and transposition; however, the importance of this mobility in short-term evolution, such as within nosocomial outbreaks, is unknown. Using a combination of short- and long-read whole-genome sequencing of 281 blaKPC-positive Enterobacteriaceae isolates from a single hospital over 5 years, we demonstrate rapid dissemination of this carbapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested genetic levels, with transmission of blaKPC strains between individuals, frequent transfer of blaKPC plasmids between strains/species, and frequent transposition of blaKPC transposon Tn4401 between plasmids. We also identify a common insertion site for Tn4401 within various Tn2-like elements, suggesting that homologous recombination between Tn2-like elements has enhanced the spread of Tn4401 between different plasmid vectors. Furthermore, while short-read sequencing has known limitations for plasmid assembly, various studies have attempted to overcome this by the use of reference-based methods. We also demonstrate that, as a consequence of the genetic mobility observed in this study, plasmid structures can be extremely dynamic, and therefore these reference-based methods, as well as traditional partial typing methods, can produce very misleading conclusions. Overall, our findings demonstrate that nonclonal resistance gene dissemination can be extremely rapid, presenting significant challenges for public health surveillance and achieving effective control of antibiotic resistance.


Assuntos
Infecções por Enterobacteriaceae/epidemiologia , Enterobacteriaceae/genética , Transferência Genética Horizontal , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Carbapenêmicos/farmacologia , Conjugação Genética , Elementos de DNA Transponíveis , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Homóloga , Humanos , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Vigilância em Saúde Pública , Centros de Atenção Terciária , Virginia/epidemiologia , beta-Lactamases/metabolismo
4.
mBio ; 7(2): e02162, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27006459

RESUMO

UNLABELLED: Escherichia colisequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n= 215) of sequenced ST131E. coliisolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of ablaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration ofblaCTX-Mwithin subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, theblaCTX-M-14/14-likegroup. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages ofE. coli These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages. IMPORTANCE: Escherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specificE. colilineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements.


Assuntos
Epidemias , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Evolução Molecular , Genótipo , Cromossomos Bacterianos , Farmacorresistência Bacteriana , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Genes Bacterianos , Saúde Global , Humanos , Epidemiologia Molecular , Plasmídeos , Análise de Sequência de DNA
5.
J Clin Microbiol ; 53(4): 1137-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631807

RESUMO

We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/µl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) as Mycobacterium tuberculosis were successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools.


Assuntos
Técnicas Bacteriológicas/métodos , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , DNA Bacteriano/análise , DNA Bacteriano/genética , Humanos , Tipagem Molecular/métodos , Análise de Sequência de DNA/métodos , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...